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EM field of relativistic particles in free space.

Field of a relativistic beam moving in free space
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Lecture outline

Electromagnetic field of a relativistic particle moving along a
straight line.

Interaction of relativistic charges in free space.

Transverse and longitudinal electromagnetic fields of a relativistic
bunch.

3D Gaussian bunch
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Relativistic field of a particle moving with constant velocity

Consider a point charge q moving with a constant velocity v along the z axis.
We are interested in the case of a relativistic velocity, v ≈ c , or γ� 1. In the
particle frame of reference it has a static Coulomb field,

E ′ =
1

4πε0

qr ′

r ′3

(the prime indicates quantities in the reference frame where the particle is at
rest).

z'

y' E'

r'

Beam frame
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Lorentz transformation of the field

To find the electric and magnetic fields in the lab frame we will use the
Lorentz transformation (1.4) for coordinates and time, and the
transformation for the fields (1.7). We have B ′ = 0: Ex = γE ′x ,
Ey = γE ′y , and Ez = E ′z . We also need to transform vector r ′ into the
lab frame using Eqs. (1.4). For the length of this vector we have

r ′ =
√
x ′2 + y ′2 + z ′2 =

√
x2 + y2 + γ2(z − vt)2

The Cartesian coordinates of E are

Ex =
1

4πε0

qγx

(x2 + y2 + γ2(z − vt)2)3/2

Ey =
1

4πε0

qγy

(x2 + y2 + γ2(z − vt)2)3/2

Ez =
1

4πε0

qγ(z − vt)

(x2 + y2 + γ2(z − vt)2)3/2
(2.1)
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Electric and magnetic fields of a relativistic point charge

These three equations can be combined into a vectorial
one

E =
1

4πε0

qr
γ2R3

(2.2)

Here vector r is drawn from the current position of the
particle to the observation point, r = (x , y , z − vt), and
R is given by

R =
√
(z − vt)2 + (x2 + y2)/γ2

z

y E

r

vt

Lab. frame

As follows from Eqs. (1.7), a moving charge carries magnetic field

B =
1

c2
v × E (2.3)

The magnetic field is directed azimuthally around the direction of motion.
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Field lines

γ−1

particle’s frame lab frame

Within a narrow cone with the angular width ∼ 1/γ with respect to the
transverse plane the field is large, E ∼ qγ/r2. On the axis the field is
weak, E ∼ 1/r2γ2. The absolute value of the magnetic field is almost
equal to that of the electric field/c .
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Limit v → c

In some problems we can neglect the small angular width of the electromagnetic
field of a relativistic particle and consider it as an infinitely thin “pancake”,
E ∝ δ(z − ct). This approximation formally corresponds to the limit v → c .
Because the field is directed along the vector drawn from the current position of
the charge, more precisely, we can write E = Aρδ(z − ct) where ρ = x̂x + ŷy
and A is a constant which is determined by the requirements that the areas
under the curves Ex(z) and Ey (z) agrees with the ones given by Eq. (2.2) in the
limit γ→∞.

Taking the limit v → c ,
we find for the fields
(ρ =

√
x2 + y2)

E =
1

4πε0

2qρ

ρ2
δ(z − ct)

B =
1

c
ẑ × E (2.4) Figure from Stohr,

Siegmann, ”Magnetism”
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Interaction of Moving Charges in Free Space

Let us now consider a source particle of charge q moving with velocity v ,
and a test particle of unit charge moving behind the leading one on a
parallel path at a distance s with an offset x . We want to find the force
which the source particle exerts on the test one.

A leading particle 1 and a trailing particle 2 traveling in free space with
parallel velocities v . Shown also is the coordinate system x , z .
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Interaction of moving charges in free space

The longitudinal force is

F` = Ez = −
1

4πε0

qs

γ2(s2 + x2/γ2)3/2
(2.5)

and the transverse force is

Ft = Ex − vBy =
1

4πε0

qx

γ4(s2 + x2/γ2)3/2
(2.6)

In accelerator physics, the force F is often called the space charge force.
The longitudinal force decreases as γ−2 when γ increases (for s & x/γ).
For the transverse force, if s � x/γ, Ft ∼ γ

−4, and for s = 0, Ft ∼ γ
−1.

Hence, in the limit γ→∞, the electromagnetic interaction in free space
between two particles on parallel paths vanishes.

9



Field of a long-thin relativistic bunch of particles

We now consider a relativistic bunch moving in free space. The bunch
length σz is much larger1 than the bunch transverse size σz � σ⊥ (a line
charge). The bunch is moving in the longitudinal direction along the z
axis with a relativistic factor γ� 1. What is the electric field of this
bunch?

γ

zv

-1

1
In what frame of reference?
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Field outside of the bunch

We first calculate the radial electric field outside of the bunch at distance
ρ from the z axis. Assuming that ρ� σ⊥ we can neglect the transverse
size of the beam and represent it as a collection of point charges located
on the z axis. Each such charge generates the electric field given by
Eq. (2.2). From this equation we find that the radial component dEρ
created by an infinitesimally small charge dq ′ located at coordinate z ′ is

dEρ(z , z
′, ρ) =

1

4πε0

ρdq ′

γ2((z − z ′)2 + ρ2/γ2)3/2
(2.7)

where z and ρ =
√

x2 + y2 refer to the observation point. To find the
field of the bunch we assume that the bunch 1D distribution function is
given by λ(z) (

∫
λ(z)dz = 1), so that the charge dq ′ within dz ′ is equal

to Qλ(z ′)dz ′, with Q the total charge of the bunch.
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Small distance from the bunch

For the field, we need to add contributions of all elementary charges in the
bunch:

Eρ(z , ρ) =

∫
dEρ(z , z

′, ρ)

=
Qρ

4πε0γ2

∫∞
−∞

λ(z ′)dz ′

((z − z ′)2 + ρ2/γ2)3/2
(2.8)

z

The function ((z − z ′)2 + ρ2/γ2)−3/2 in this
integral [red] has a sharp peak at z ′ ≈ z of
width ∆z ∼ ρ/γ at z = z ′. At distances
ρ� σzγ from the bunch the width of the peak
is smaller than the width of the distribution
function σz [blue], and we can replace it by the
delta function:

1

((z − z ′)2 + ρ2/γ2)3/2
→ 2γ2

ρ2
δ(z − z ′) . (2.9)
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Small distance from the bunch

The factor in front of the delta function on the right hand side follows
from the requirements that the area under the functions on the left hand
side and on the right hand side should be equal, and from the
mathematical identity∫∞

−∞
dz ′

((z − z ′)2 + a2)3/2
=

2

a2

The approximation (2.9) is equivalent to using Eqs. (2.4) instead of
(2.2). The result is

Eρ(z , ρ) =
1

4πε0

2Qλ(z)

ρ
(2.10)

We see that the factor γ does not enter this formula—this agrees with
our expectation because Eqs. (2.4) are valid in the limit γ→∞.
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Large distance from the bunch

z

In the opposite limit, ρ� σzγ, we can
replace λ(z) in Eq. (2.8) by the delta
function δ(z), which gives the field of a
point charge

Eρ(z , ρ) =
1

4πε0

Qργ

(z2γ2 + ρ2)3/2
(2.11)

In the intermediate region, ρ ∼ σzγ, the result is shown on the next slide
for a Gaussian distribution function λ(z) = (1/

√
2πσz)e

−z2/2σ2
z .
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Field distribution as a function of distance
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Transverse electric field of a relativistic bunch with Gaussian distribution for
various values of the parameter ρ/σzγ. The field is normalized by
(4πε0)

−1Q/γσ2
z .

The magnetic field of the beam

B =
v

c2
ẑ × E .

For an axisymmetric beam this means azimuthal magnetic field Bθ = βEρ/c .
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Electric field lines
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Electric field lines of a thin relativistic bunch with γ = 10. The red line
at the bottom shows the longitudinal Gaussian charge distribution in the
bunch.
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Transverse field inside the bunch

If we want to find the transverse field inside the bunch, we need to drop
the assumption of an infinitely thin bunch. Let us assume a beam of
radius a with a uniform charge density en0 inside. The beam moves with
velocity v along the z axis. We can find the radial electric field Eρ and
the magnetic field Bθ from Gauss’s and Ampere’s laws, respectively.

Eρ =
en0

2ε0
ρ, Bθ =

en0β

2ε0c
ρ (2.12)

The e.m. transverse force is

Fρ = e(Eρ − cβBθ) =
e

γ2

en0

2ε0
ρ (2.13)

There is a cancellation of the electric and magnetic forces that results in
the small factor γ−2.
These formulas are also valid for a long-thin bunch (σ⊥ � γσz) — to

find the fields at z one needs to substitute the local value n0(z) =
λ(z)
πa2 .
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Space charge tune shift in CERN PS

This force is called the direct space charge force. It results in the
incoherent tune shift in a circular accelerators.

Example for a space-charge limited synchrotron:
betatron tune diagram and areas covered by
direct space-charge tune spreads at injection,
intermediate, and extraction energies for the
CERN Proton Synchrotron Booster. During
acceleration, space charge gets weaker and the
“necktie” area shrinks, enabling the external
machine tunes to move the ”necktie” to an area
clear of betatron resonances.
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Longitudinal field inside the bunch

What is the longitudinal electric field inside the bunch? If we neglect the
transverse size of the beam and assume the same infinitely-thin-beam
approximation we used above, we can try to integrate the longitudinal
field of a unit point charge

dEz(z , z
′) =

dq ′

4πε0γ2

z − z ′

|z − z ′|3

as we did above for the transverse field:

Ez(z) =

∫
dEz(z , z

′)

=
Q

4πε0γ2

∫
dz ′λ(z ′)

z − z ′

|z − z ′|3
(2.14)

but the integral diverges at z ′ → z . This divergence indicates that one
has to take into account the finite transverse size of the beam which we
denote by σ⊥.
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Estimate of the longitudinal field

We can still extract an order of magnitude estimate from Eq. (2.14). Do
not approach to the singularity at the distance smaller than some ∆zmin

and estimate λ(z ′) ∼ 1/σz . This gives2

Ez ∼
1

4πε0

Q

σ2
zγ

2
log

σz

∆zmin

One can show that ∆zmin ∼ σ⊥/γ and a crude estimate for Ez is:

Ez ∼
1

4πε0

Q

σ2
zγ

2
log

σzγ

σ⊥
(2.15)

This estimate is valid in the limit σ⊥/γσz � 1. Formally, it diverges in
the limit of infinitely thin beam (σ⊥ → 0), but in reality the effect of the
longitudinal electric field for relativistic beams is often small because of
the factor γ−2 (the so called space charge effect).

2
To arrive at this result it helps to replace z−z ′

|z−z ′|3 → ∂
∂z ′

1
|z−z ′| in Eq. (2.14) and integrate by parts.
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Electric field of a 3D Gaussian distribution

A bunch of charged particles in accelerator physics is often represented as
having a Gaussian distribution function in all three directions so that the
charge density ρ (do not confuse with the transverse radius) is

ρ(x , y , z) =
Q

(2π)3/2σxσyσz
e−x2/2σ2

x−y2/2σ2
y−z2/2σ2

z (2.16)

where σx , σy , and σz are the rms bunch lengths in the corresponding
directions. What is the electric field of such bunch? This problem can be
solved exactly in the beam frame where the beam is at rest, and the field
is purely electrostatic.

Due to the Lorentz transformations the bunch length in the beam frame
is γ times longer than in the lab frame, σz ,b = γσz ,lab. We assume that
this factor is already taken into account and σz = σz ,b in (2.16) is the
bunch length in the beam frame.
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Electric field of a 3D Gaussian distribution

The electrostatic potential φb in the beam frame of reference satisfies
the Poisson equation

∇2φb = −
ρb
ε0

whose solution can be written as

φb(x , y , z) =
1

4πε0

∫
ρb(x

′, y ′, z ′)dx ′dy ′dz ′

[(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2
(2.17)

It is not an easy problem to carry out the three-dimensional integration
in this equation. A trick that reduces Eq. (2.17) to a one-dimensional
integral is to use the following identity

1

R
=

√
2

π

∫∞
0

e−λ
2R2/2dλ (2.18)
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Electric field of a 3D Gaussian distribution

Assuming that R = [(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2 and replacing
1/R in Eq. (2.17) with Eq. (2.18) we first arrive at the four-dimensional
integral

φb =
1

4πε0

√
2

π

∫∞
0

dλ

∫
e−λ

2[(x−x ′)2+(y−y ′)2+(z−z ′)2]/2

× ρb(x ′, y ′, z ′)dx ′dy ′dz ′ (2.19)

With the Gaussian distribution (2.16) the integration over x ′, y ′ and z ′

can now be easily carried out, e.g.,∫∞
−∞ e−

1
2
λ2(x−x ′)2

e
− x ′2

2σ2
x dx ′ =

√
2π√

λ2 + σ−2
x

e
− x2λ2

2(λ2σ2
x+1)
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Electric field of a 3D Gaussian distribution

which gives for the potential

φb =
1

4πε0

√
2

π

Q

σxσyσz ,b

∫∞
0

dλ
e
− x2λ2

2(λ2σ2
x+1) e

− y2λ2

2(λ2σ2
y+1) e

− z2λ2

2(λ2σ2
z,b

+1)√
λ2 + σ−2

x

√
λ2 + σ−2

y

√
λ2 + σ−2

z ,b

(2.20)

This integral is much easier to evaluate numerically, and it is often used
in numerical simulations to calculate the field of charged bunches. There
are various useful limiting cases of this expression, such as σx = σy
(axisymmetric beam) or σx , σy � σz ,b (a long, thin beam) that can be
analyzed. Eq. (2.15) can be derived from this formula in the limit of thin
beam.
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Electric field of a 3D Gaussian distribution

Having found the potential in the beam frame, it is now easy to
transform it to the laboratory frame using the Lorentz transformation.
First we have to recall that σz ,b is the bunch length in the beam frame
equal to γσz ,lab. Second, from the Lorentz transformations (1.9) we see
that the potential in the lab frame is γ times larger than in the beam
frame (note that A ′z = 0). Third, we need to transform the coordinates
x , y , z to the lab frame. The x and y coordinates are not transformed
however z should be replaced by γ(zlab − vtlab). The resulting expression
is (we drop all “lab” subscripts in what follows)

φ =
Q

4πε0

√
2

π

∫∞
0

dλ√
λ2σ2

x + 1
√
λ2σ2

y + 1
√
λ2σ2

z + γ
−2

× e
− x2λ2

2(λ2σ2
x+1) e

− y2λ2

2(λ2σ2
y+1) e

−
(z−vt)2λ2

2(λ2σ2
z+γ

−2) (2.21)

The vector potential in the lab frame has only z component and is equal
to Az = vφ/c2.
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Bassetti-Erskine formula

In the limit σz →∞ the expression for the potential and the components of the
field, Ex and Ey can be simplified and expressed in terms of the complex error
function3

w(z) = e−z2

(
1 +

2i√
π

∫ z
0

eζ
2

dζ

)
Here are the expressions for the fields

This is often a good approximation because in many cases the bunches are
relatively long.

3
M. Bassetti and G.A. Erskine, “Closed expression for the electrical field of a two-dimensional Gaussian charge”,

CERN-ISR-TH/80-06 (1980).
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The beam field can be visualized in experiment4

x

y
M

The beam passes through a thin Fe film
on GaAs surface. σz = 630 µm, beam
cross section 6× 9 µm, beam energy 28
GeV, Q ≈ 2 nC. The film is initially
magnetized in −x direction. The final
magnetization (and the darkness) is
defined by

∫
Bydt.

The pattern boundaries are lines of constant value of∫
Bydt = C

x

ρ2
= C

x

x2 + y2

Lines By = const are circles that go through the center of the beam.

4
C. Stamm et al. PRL 94, 197603 (2005)
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